Pesquisar este blog

segunda-feira, 31 de março de 2014

Atividades PA e PG

  • Questão 1
    A sequência seguinte é uma progressão geométrica, observe: (2, 6, 18, 54...). Determine o 8º termo dessa progressão.   


  • Questão 2
    (Vunesp – SP – Adaptado)
    Várias tábuas iguais estão em uma madeireira. Elas deverão ser empilhadas respeitando a seguinte ordem: uma tábua na primeira vez e, em cada uma das vezes seguintes, tantas quantas já estejam na pilha. Por exemplo:

    Determine a quantidade de tábuas empilhadas na 12ª pilha.


  • Questão 3
    (UE – PA)
    Um carro, cujo preço à vista é R$ 24 000,00, pode ser adquirido dando-se uma entrada e o restante em 5 parcelas que se encontram em progressão geométrica. Um cliente que optou por esse plano, ao pagar a entrada, foi informado que a segunda parcela seria de R$ 4 000,00 e a quarta parcela de R$ 1 000,00. Quanto esse cliente pagou de entrada na aquisição desse carro?


  • Questão 4
    Sabendo que uma PG tem a1 = 4 e razão q = 2, determine a soma dos 10 primeiros termos dessa progressão. 






Lista PA e PG

LISTA DE EXERCÍCIOS DE MATEMÁTICA P.A E PG 
01. (Cefet-MG) A sequência (m, 1, n) é uma progressão aritmética e a sequência (m, n, – 8) é uma
progressão geométrica. O valor de n é:
A) – 2
B) – 1
C) 3
D) 4
E) 8


02. (PUC-MG) De segunda a sexta-feira, uma pessoa caminha na pista de 670 metros que contorna certa
praça. A cada dia, ela percorre sempre uma volta a mais do que no dia anterior. Se, após andar cinco
dias, ela tiver percorrido um total de 23,45 km, pode-se afirmar que, no terceiro dia, essa pessoa deu x
voltas em torno da praça. O valor de x é:
A) 6
B) 7
C) 8
D) 9

03. (Fuvest-SP) Três números positivos, cuja soma é 30, estão em progressão aritmética. Somando-se,
respectivamente, 4, – 4, e – 9 aos primeiro, segundo e terceiro termos dessa progressão aritmética,
obtemos três números em progressão geométrica. Então, um dos termos da progressão aritmética é:
A) 9
B) 11
C) 12
D) 13
E) 15

4. (UFOP-MG) Num determinado jogo de apostas, o prêmio pago a cada jogador vencedor é duas vezes
o valor de sua aposta. Maria adotou o seguinte esquema de apostas: na 1a
 tentativa, apostaria R$ 10,00;
na 2a
 tentativa, apostaria R$ 20,00; na 3a
 tentativa, apostaria R$ 40,00 e assim por diante, até conseguir
vencer. Num certo dia, Maria só conseguiu vencer na 10a
 tentativa. Nesse dia, ela teve lucro ou prejuízo?
De quanto?

5. (UFRJ) Felipe começa a escrever números naturais em uma folha de papel muito grande, uma linha
após a outra, como mostra a seguir:

06. (UFU-MG) Sabendo-se que o lado do primeiro quadrado de uma coleção de quadrados mede 1 cm, o
lado do segundo quadrado mede 2 cm, o do terceiro mede 3 cm, e assim sucessivamente, determine o
número mínimo de quadrados que a coleção deve ter para que a soma dos comprimentos de todas as
diagonais dos quadrados seja maior do que ou igual a 420 2 cm.

07 (Héwerton-MG) Obter uma P.A. crescente de 4 termos inteiros em que a soma dos termos é 32 e o
produto é 3465.


08 (ITA-SP) Quantos números inteiros existem, de 1000 a 10000, não são divisíveis nem por 5 e nem
por 7.





Exercícios PA e PG

 Questões » Progressão Geométrica (PG)

lista de exercícios PA e PG

1. O valor de x, de modo que os números 3x – 1, x + 3 e x + 9  estejam, nessa ordem, em PA é
    A)   1
    B)   0
    C)   -1
    D)   –2

2. O centésimo número natural par não negativo é
    A)   200
    B)   210
    C)   198
    D)   196

3. Quantos números ímpares há entre 18 e 272?
    A)   100
    B)   115
    C)   127
    D)   135

4. Um estacionamento cobra R$ 6,00 pela primeira hora. A partir da segunda hora, os preços caem em progressão aritmética. O valor da segunda hora é R$ 4,00 e o da sétima é R$ 0,50. Quanto gastará o proprietário de um automóvel estacionado 5 horas nesse local?
    A)   R$ 17,80
    B)   R$ 20,00
    C)   R$ 18,00
    D)   R$ 18,70

5. Um doente toma duas pílulas de certo remédio no primeiro dia, quatro no segundo dia, seis no terceiro dia e assim sucessivamente até terminar o conteúdo do vidro.
Em quantos dias terá tomado todo o conteúdo, que é de 72 pílulas?
    A)   6
    B)   8
    C)   10
    D)   12

6. Se cada coelha de uma colônia gera três coelhas, qual o número de coelhas da 7ª geração que serão descendentes de uma única coelha?
    A)   3000
    B)   1840
    C)   2187
    D)   3216

7. Comprei um automóvel e vou pagá-lo em 7 prestações crescentes, de modo que a primeira prestação seja de 100 reais e cada uma das seguintes seja o dobro da anterior. Qual é o preço do automóvel?
    A)   R$ 12 700,00
    B)   R$ 13 000,00
    C)   R$ 11 800,00
    D)   R$ 13 200,00

8. Segundo a lei de Malthus, a população humana cresce em progressão geométrica, enquanto as fontes de alimento crescem em progressão aritmética.
    a)  Explique o significado matemático dos termos progressão geométrica e progressão aritmética.
     b)  O que aconteceria à humanidade, segundo à lei de Malthus?

9. Isis abriu uma caderneta de poupança no dia 1/2/2000 com um depósito inicial de R$ 1000,00. Suponha que os rendimentos da poupança sejam fixos e iguais a 3% ao mês.
    a)    Qual o montante dessa conta em 1/8/2000?
    b)    Em quantos meses ela terá um montante aproximadamente R$ 1 512,60?

10. Ao escalar uma trilha de montanha, um alpinista percorre 256 m na primeira hora, 128 na segunda hora, 64 na terceira hora e assim sucessivamente. Determine o tempo (em horas) necessário para completar um percurso de:
     a) 480 m                                            b) 600 m

11. (UFMG)Uma criação de coelhos foi iniciada há exatamente um ano e, durante esse período, o número de coelhos duplicou a cada 4 meses. Hoje, parte dessa criação deverá ser vendida para se ficar com a quantidade inicial de coelhos.
Para que isso ocorra, a porcentagem da população atual dessa criação de coelhos a ser vendida é
     A)  75%
     B)  80%
     C)  83,33%
     D)  87,5%

12. Numa PG de quatro termos, a razão é 5 e o último termo é 375. O primeiro termo dessa PG é
     A)   1             
     B)   2
     C)   3
     D)   4

13. A medida do lado, o perímetro e a área de um quadrado estão, nessa ordem, em progressão geométrica. Qual a área do quadrado?

14. Insira quatro meios geométricos entre 1 e 243.

15. O salário inicial de um funcionário é de R$ 1 200,00. Supondo que esse funcionário receba um aumento de 5% a cada mês subsequente, de quanto será o salário dele após 6 meses?

16. São dados quatro números positivos: 12, x, y, 4. Sabendo que os três primeiros estão em PA e os três últimos estão em PG, achar x  e  y.

17. Um professor de educação física organizou seus 210 alunos para formar um triângulo. Colocou um aluno na primeira linha, dois na segunda, três na terceira, e assim por diante. O número de linhas é   
     A)    10
     B)    15
     C)    20
     D)    30
     E)    NRA

18. A razão da P.G. (a, a + 3, 5a – 3, 8a) é      (1,0)
     A)    1
     B)    2
     C)    3
     D)    4
     E)    NRA

19. Quantos termos tem a PA (5, 10, ..., 785)?
     A) 157
     B) 205
     C) 138
     D) 208

20. Um atleta corre sempre 500 metros a mais do que no dia anterior. Sabendo-se que ao final de 15 dias ele correu um total de 67 500 metros, o número de metros percorridos no 3° dia foi
     A)    1 000
     B)    2 000
     C)    1 500
     D)    2 500
     E)    2 600

21. Uma certa espécie de bactéria divide-se em duas a cada 20 minutos, e uma outra, a cada 30 minutos. Determine, após 3 horas, a razão entre o número de bactérias da 1ª e o da 2ª espécies, originadas por uma bactéria de cada espécie.
     A)    8
     B)    4
     C)    2
     D)    0
     E)    12

22. Ao escalar uma trilha de montanha, um alpinista percorre 256 m na primeira hora, 128 na segunda hora, 64 na terceira hora e assim sucessivamente. Determine o tempo (em horas) necessário para completar um percurso de 480 m.

23. O valor de x, de modo que os números  3x – 1,  x + 3  e  x + 9  estejam, nessa ordem, em PA é:
     A)      1
     B)      0
     C)      –1
     D)      –2

25. Em uma progressão aritmética de termos positivos, os três primeiros são  1 – a, -a, . O quarto termo dessa progressão é:
     A)      1
     B)      4
     C)      2
     D)      3     

26. Um pintor consegue pintar uma área de 5 m2  no primeiro dia de serviço e, a cada dia, ele pinta 2 m2 a mais do que pintou no dia anterior. Em que dia ele terá conseguido pintar 31 m2 ?
     A)      11°
     B)      12°
     C)      13°
     D)      14° 

27. O valor de x , de modo que a seqüência (3x +1, 34 - x,  33x +1) seja uma progressão geométrica é:
     A)      1
     B)      2
     C)      3
     D)      4

28. Em um rebanho de 15 000 reses, uma foi infectada pelo vírus “mc1”. Cada animal infectado vive dois dias, ao final dos quais infecciona outros três animais. Se cada rês é infectada uma única vez, em quanto tempo o “mc1” exterminará a metade do rebanho?
     A)   15 dias
     B)   16 dias
     C)   17 dias
     D)   18 dias